Хотите узнать, как правильно осуществить подключение люминесцентных ламп без стартера? Тогда вам обязательно стоит прочитать нашу статью, в которой мы расскажем об эффективной схеме подключения, которая поможет вам избежать множества проблем и сэкономить время и деньги. Не упустите шанс узнать полезную информацию!
25.01.201725.01.2017 мастер
Люминесцентную лампочку сегодня можно встретить практически в любом помещении. Она является источником дневного света и дает возможность экономить электроэнергию. Поэтому такие лампы называются еще экономками.
Внешний вид люминесцентной лампы
Но такие изделия имеют один существенный недостаток – они перегорают. И причиной тому является сгорание электронной начинки – дросселя или стартера. Данная статья расскажет вам о том, существует ли способ подключения люминесцентных ламп без использования дросселя в электросхеме.
Выбор стартера: на что обращать внимание
Содержание
- 1 Выбор стартера: на что обращать внимание
- 2 Устройство
- 3 Принцип действия лампы дневного света
- 4 Традиционная схема с электромагнитным балластом
- 5 Как работает экономка
- 6 Способы пуска ЛДС без специализированного ПРА
- 7 Как проверить исправность?
- 8 Для чего нужен?
- 9 Запуск лампочек без стартера
- 10 Как проводится проверка стартера
- 11 Варианты подключений
- 12 Принцип работы
- 13 Принцип работы
- 14 Особенности источника света
- 15 Схемы
- 16 Питание от 220В без дросселя и стартера
- 17 Схемы со стартером
- 18 Технические характеристики
- 19 Устройство стартера люминесцентных ламп
- 20 Устройство и особенности работы лампы
- 21 Еще один вариант соединения
- 22 Чем люминесцентные лампы лучше ламп накаливания?
Самые распространенные критерии, основываясь на которых потребители покупают элементы освещения для своего дома, — это производитель и цена. Такие параметры важны, но далеко не всегда можно выбрать подходящее конструктивное решение устройства, руководствуясь лишь этими моментами
При покупке пускового элемента стоит обратить внимание на:
- Номинальное напряжение. Для подключенной двухламповой системы подойдет устройство пуска, рассчитанное на 127 В. Если система подключения одноламповая, применим стартер на 220 В. В маркировке это указано.
- Мощность. В зависимости от уровня мощности ламп принято различать и пусковые устройства, которые также обладают разными мощностными показателями.
- Качественный корпус. Основной параметр — огнеустойчивость. Так как в конструкции элемента не исключен вариант возгорания за счет электродуги, перегрева.
- Срок эксплуатации. Этот параметр по-разному оценивается у разных производителей. К примеру, срок службы стартеров фирмы Филипс, при нормальных условиях эксплуатации, обозначенных на упаковке, подразумевает возможное количество включений лампы, превышающее 6 000 раз.
- Продолжительность замкнутого состояния электродов или время катодного подогрева. Разброс в значениях этой характеристики у разных производителей — значителен.
- Тип конденсатора.
Стоит помнить! Маркировка отечественных производителей отличается от заграничных.
Основа маркировки по ГОСТу:
- Буква «С» — стартер.
- Цифры перед «С» — это мощность источника света (60 Вт; 90 Вт или 120 Вт).
- Цифры после — это напряжение (127 В или 220 В).
Заграничная маркировка:
- Под лампы мощностью от 4 Вт до 80 Вт и с показателем напряжения в 220 В стартеры обозначаются: S10; FS-U; ST 111.
- Для лампочек мощностью не больше 22 Вт и напряжением 127 В пускатели маркированы: S2; FS-2; ST 151.
Обратите внимание! Маркировки по ГОСТу таких деталей для ЛДС приводятся на корпусе пускателя. Производителей подобных элементов стартерной системы зажигания ламп достаточно много
Основной момент, на который покупатель должен обратить внимание при выборе модели, – соответствие всех технических характеристик прописанным профильным параметрам ГОСТа
Производителей подобных элементов стартерной системы зажигания ламп достаточно много
Основной момент, на который покупатель должен обратить внимание при выборе модели, – соответствие всех технических характеристик прописанным профильным параметрам ГОСТа
Устройство
Конструкция люминесцентной лампы состоит из:
- прозрачной вытянутой трубки;
- двух цоколей с двумя электродами;
- стартер, начинающий работать от розжига;
- электромагнитный дроссель;
- конденсатор от сети.
Колба лампочки производится из кварцевого стекла. В начале работы на производстве из колбы выкачивают воздух и создают вакуумную среду, а потом она наполняется смесью инертного газа с добавлением ртути. Последняя должна быть в газообразном состоянии, потому что внутри высокое давление.
Поверхность колбы изнутри покрывается фосфоресцирующим веществом, оно перерабатывает энергию ультрафиолетового света в видимый человеческому глазу луч.
К концам электродов лампочки подсоединяется переменное напряжение сети. Нити из вольфрама покрываются тяжелым металлом, который во время работы испускает электроны. В основном используются цезий, барий, талий. Дроссель похож на катушку, у которой высокая величина магнитной проницаемости.
Электрод
Наружной частью электрод спаивается с цоколем. Из сосуда начинают обильное откачивание всего воздуха с помощью штенгеля, который находится в одной из ножек c электродами. Далее начинается наполнение вакуумной среды инертными газами c добавками ртути.
На определенные виды электродов обязательно напыляют активирующее вещество, например оксид бария, талия или кальция.
Атом ртути
В люминесцентную лампу добавляют немного ртути, которая превращается в пар во время розжига разряда, и некоторую часть аргона, которая помогает повышению срока эксплуатации изделия и улучшению условий для оживления атомов ртути.
При включении устройства к сети подается электрический разряд, оживляющий работу паров ртути. Тонкая пленка люминофора активизируется под воздействием света паров ртути.
Стеклянная трубка
Трубка из стекла может иметь различный диаметр. Сила светового потока может быть разной, это зависит от мощности люминесцентной лампы. Для ее правильной работы необходим стартер дроссельного вида.
Внимание! Температура в трубке не должна быть свыше 55 градусов. Поэтому данную лампу нельзя применять в промышленных горячих цехах
Люминофор
Самой главной частью люминесцентного устройства будет слой люминофора. КПД люминофоров— соотношение величины излучаемых квантов к величине, поглощённых по большей степени, зависит от качества сырья, используемого при производстве люминофора.
Принцип действия лампы дневного света
Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе. Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.
- Дроссель.
- Колба лампы.
- Люминесцентный слой.
- Контакты стартера.
- Электроды стартера.
- Корпус стартера.
- Биметаллическая пластина.
- Газ.
- Нити накала лампы.
- Ультрафиолетовое излучение.
- Ток разряда.
Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки. Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда. Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.
Традиционная схема с электромагнитным балластом
В данном случае ключевую роль играет катушка с сердечником – дроссель, который благодаря явлению самоиндукции способен обеспечить импульс требуемой величины для создания тлеющего разряда в люминесцентной лампе. Как ее подключить к питанию через дроссель, изображено на схеме:
Второй элемент ПРА – это стартер, представляющий собой цилиндрическую коробочку с конденсатором и маленькой неоновой лампочкой внутри. Последняя снабжена биметаллической пластиной и действует как прерыватель цепи. Подключение через электромагнитный балласт работает по такому алгоритму:
- После замыкания контактов главного выключателя ток проходит дроссель, первую спираль накала лампы и стартер, а возвращается через вторую вольфрамовую нить.
- Биметаллическая пластина в стартере разогревается и замыкает цепь напрямую. Возрастает ток, отчего начинают накаляться вольфрамовые нити.
- После охлаждения пластина принимает первоначальную форму и снова размыкает контакты. В этот момент в дросселе и образуется импульс высокого напряжения, вызывающий разряд в лампе. Дальше для поддержания свечения хватает 220 В, поступающих из электросети.
Так выглядит начинка стартера — всего 2 детали
Справка. Принцип подключения с дросселем и конденсатором похож на систему автомобильного зажигания, где мощная искра на свечах проскакивает в момент разрыва цепи высоковольтной катушки.
Конденсатор, установленный в стартере и присоединенный параллельно биметаллическому прерывателю, выполняет 2 функции: продлевает действие высоковольтного импульса и служит защитой от радиопомех. Если же необходимо подключить 2 люминесцентных лампы, то одной катушки будет достаточно, а вот стартеров потребуется два, как показано на схеме.
Подробнее о работе газоразрядных лампочек с ПРА рассказано в видеоролике:
Как работает экономка
Внешний облик ламп дневного света может быть различным. Несмотря на это они имеют одинаковый принцип работы, который реализуется благодаря следующим элементам, которые обычно содержит схема прибора:
- электродов;
- люминофор – специальное люминесцентное покрытие;
- стеклянная колба с инертным газом и парами ртути внутри.
Советуем изучить — Условия эксплуатации электродвигателей
Строение люминесцентной лампочки
Такая лампа дневного света представляет собой газоразрядное устройство с герметичной стеклянной колбой. Газовая смесь внутри колбы подобрана таким образом, чтобы снижать затраты энергии, необходимые на поддержку процесса ионизации.
Для этого на электроды люминесцентной лампы подается на электроды напряжение конкретной величины. Они расположены в противоположных сторонах стеклянной колбы. Каждый электрод имеет два контакта, которые соединяются с источником тока. Таким образом происходит обогрев пространства вблизи электродов. Фактическая схема подключения данного источника света состоит из серии последовательных действий:
- нагрев электродов;
- далее на них осуществляется подача высоковольтного импульса;
- в электроцепи поддерживается оптимальное напряжение для создания тлеющего разряда.
В результате этого в колбе образуется ультрафиолетовое невидимое свечение, которое, проходя через люминофор, становится видимым для человеческого глаза. Чтобы поддерживать напряжение для создания тлеющего разряда, схема работы люминесцентных ламп предполагает подключение следующих приспособлений:
дросселя. Он выступает в роли балласта и предназначен для ограничения силы тока, текущего по прибору, до оптимального уровня;
Дроссель для люминесцентных лампочек
стартера. Он предназначен для защиты лампы дневного света от перегрева. При этом он регулирует накал электродов.
Очень часто причиной поломки экономок является выход из строя электронной начинки балласта или перегорания стартера. Чтобы этого избежать, можно не использовать в подключении перегорающие детали.
Стандартная схема соединения
Стандартная схема, применяемая для подключения люминесцентных ламп, может быть видоизменена (идти без дросселя). Это позволит минимизировать рис выхода из строя осветительного прибора.
Вариант включения без балласта
Как мы выяснили, балласт в устройстве лампы дневного света играет важную роль. При этом на сегодняшний день существует схема, при которой можно избежать включение данного элемента, который очень часто выходит из строя. Можно избежать включения, как балласта, так и стартера.
Как видим, данная схема не содержит нить накала. При этом питание ламп/трубки здесь будет осуществляться через диодный мост, который и будет создавать повышенное постоянное напряжение. Но в такой ситуации необходимо помнить о том, что при данном способе питания осветительное изделие может потемнеть с одной стороны. В реализации приведенная выше схема достаточно проста. Ее можно реализовать при помощи старых компонентов. Для такого типа подключения можно использовать следующие элементы:
- трубка/источник света мощностью 18 Вт;
- сборка GBU 408. Она будет выступать в роли диодного моста;
Диодный мост
конденсаторы с рабочим напряжением не превышающего 1000 В, имеющие емкость 2 и 3 нФ.
Собранная схема
Необходимо помнить о том, что подбор диодов для диодного моста, а также конденсаторов необходимо осуществляться с запасом по напряжении. Осветительный прибор, собранный таким образом будет давать свечение немного меньшее по яркости, чем при использовании стандартного варианта подключения с использованием дросселя и стартера.
Способы пуска ЛДС без специализированного ПРА
При выходе из строя лампы дневного света возможны две причины: 1) Из строя вышел стартер. В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений. 2) Из строя вышла сама ЛДС. Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов. Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы. При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность.
Рис. 4 Принципиальная схема запуска ЛДС без стартера Если требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).
Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накала Для дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит. Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.
Рис. 6. Структурная схема подключения ЛДС без дросселя
Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пуска Как видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1. Ещё один вариант схемы запуска показан на рис 8.
Рис. 8 Принципиальная схема умножителя с двумя диодами Параметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6. Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.
Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питания Для вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.
Как проверить исправность?
Дроссель является достаточно прочным и надежным составным элементом люминесцентной лампы. Поэтому выходит из строя устройство очень редко.
Но все же иногда может возникать обрыв его обмотки или перегорание. Также при нарушении изоляционного слоя между витками дроссель перестает функционировать. Как определить исправность дросселя?
Проверка проводится мультиметром. Прибор, настроенный на величину сопротивления подключают к выводам дросселя. При нарушениях в обмотке на измерительном приборе высвечивается бесконечное сопротивление. Минимальные показатели этого значения свидетельствуют о непригодности изоляции или замыкании между витками.
При перегорании обмотки в катушке ощущается характерный паленый запах, который изначально исходит от детали в процессе ее работы. Все описанные характеристики неисправности дросселя в основном относятся к устройствам электромагнитного типа.
Для чего нужен?
Люминесцентная лампа не может работать по принципу простой лампы накаливания. Чтобы обеспечить ее функционирование необходимо дополнительное устройство, которое способно создать импульс для электрического пробоя наполненной газом среды. Таким элементом является дроссель. Он поддерживает требуемую мощность в процессе работы светильника.
Чтобы задействовать люминесцентную лампочку необходимо не только обеспечение доступа тока, а и подача напряжения к ней. Для этого подключают дроссель, который ограничивает нарастание движения электрического заряда при подключении к электросети.
Основными функциями ограничивающего ток устройства являются:
- обеспечение беспрерывной работы лампы независимо от возникающих в электрической сети отклонений напряжения;
- организация подачи оптимального и безопасного для конкретного светильника тока, способствующего быстрому разогреву при зажигании электродов;
- стабилизация разрядов тока при номинальных показателях.
С помощью дросселя в люминесцентной колбе происходит формирование разряда за счет образования в обмотке импульса повышенного напряжения.
Запуск лампочек без стартера
Эта деталь электромагнитного балласта выходит из строя довольно часто, а в запасе не всегда есть новая. Чтобы и дальше пользоваться источником дневного света, можно вместо стартера поставить ручной прерыватель – кнопку, как это продемонстрировано на схеме:
Суть в том, чтобы вручную имитировать работу биметаллической пластины: сначала замкнуть цепь, обождать 3 секунды, пока прогреются нити лампы, а потом разомкнуть. Здесь важно правильно подобрать кнопку под напряжение 220 В, чтобы вас не ударило током (подойдет от обычного дверного звонка).
В процессе эксплуатации люминесцентной лампы покрытие вольфрамовых нитей постепенно осыпается, отчего они могут сгореть. Явление характеризуется почернением краевых зон около электродов и говорит о том, что светильник скоро выйдет из строя. Но даже с перегоревшими спиралями изделие остается работоспособным, только его надо подключить к электросети по такой схеме:
При желании газоразрядный источник света можно зажечь без дросселей и конденсаторов, используя готовую мини-плату от сгоревшей энергосберегающей лампочки, работающей по такому же принципу. Как это сделать, показано в следующем видео:
Как проводится проверка стартера
При ремонте люминесцентных осветительных приборов часто возникает потребность в отдельной проверке стартера. В конструкции осветительного прибора он представляет собой небольшую и достаточно простую деталь, которая при выходе из строя может принести настоящую головную боль. Поэтому, если у вас имеется нерабочий светильник, работающий на люминесцентных источниках света, то всегда нужно в первую очередь проверить на работоспособность стартера. Обычно они выходят из строя по причине износа лампы тлеющего разряда или биметаллической пластины. В такой ситуации светильник при запуске может вообще не загореться или во время работы мигать. При этом запустить прибор со второй попытки также не удастся. Это связано с тем, что ему просто не хватает напряжения для запуска лампы.Самым простым способом проверить стартер на работоспособность является его замена на другой аналогичный прибор. Если поставить в лампу новую деталь и она начнет работать, значит проблема была именно здесь.
Замена стартера на новый
Как видим, здесь можно обойтись вообще без какого-либо измерительного прибора. Но не всегда под рукой имеется запасная деталь той же мощности. Поэтому чаще всего для проверки создают простейшую схему в которой стартер нужно последовательно подключить с лампой накаливания. Питание схемы происходит от сети в 220 В через розетку.
Советуем изучить — Микропроцессорные терминалы защит и автоматики ABB
Лучше всего брать лампочки, с небольшой мощностью примерно в 40-60 Вт. Включив в сеть такую схему, можно сразу же вычислить рабочий ли стартер или нет. Если лапочка зажглась, и будет гореть с периодическим отключением на доли секунды, то это сигнализирует о его работоспособности. При этом будет слышен характерный щелчок. Это будут срабатывать его контакты. В ситуации, когда лампочка не загорается или наоборот, постоянно горит и не моргает, то наша деталь признается нерабочей и подлежит замене.
Также бывают ситуации, когда деталь будет абсолютно исправной, но светильник не работает. В таком случае необходимо искать причину поломки в дросселе или других элементах электросхемы.
Варианты подключений
Рассмотрим разные варианты подключения люминесцентной лампы.
Подключение с использованием электромагнитного баланса (ЭмПРА)
Наиболее распространенный тип подключения люминесцентного источника света — схема со стартером, где используется ЭмПРА. Принцип действия схемы базируется на том, что в результате подключения питания в стартере возникает разряд и происходит замыкание биметаллических электродов.
Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В результате рабочий ток в лампочке увеличивается почти в три раза, происходит стремительный нагрев электродов, а после потери температуры проводниками возникает самоиндукция и зажигание лампы.
Схема включения устроена таким образом, что в ней есть один дроссель на две лампочки. Индуктивности дросселя должно хватать на оба источника света. Используются стартеры на 127 Вольт. Для одноламповой схемы они не подходят, там нужны устройства на 220 Вольт.
На картинке внизу показано бездроссельное подключение. Стартер отсутствует. Схема используется в случае перегорания у ламп нитей накала. Используется повышающий трансформатор Т1 и конденсатор С1, ограничивающий ток, идущий через лампочку от 220-вольтной сети.
Следующая схема используется для лампочек с перегоревшими нитями. Однако отсутствует необходимость в повышающем трансформаторе, благодаря чему конструкция устройства становится проще.
Ниже показан способ использования диодного выпрямительного моста, который нивелирует мерцание лампочки.
На рисунке внизу та же методика, но в более сложном исполнении.
Две трубки и два дросселя
Чтобы подключить лампу дневного света, можно использовать последовательное подключение:
Тем же образом подключают вторую трубку. Вначале дроссель, затем один контакт лампочки (2). Второй контакт группы направляется на второй стартер. Выход стартера объединяется со второй парой контактов источника света (2). Оставшийся контакт следует подсоединить к нулю ввода.
Схема подключения двух ламп от одного дросселя
Схема предусматривает наличие двух стартеров и одного дросселя. Наиболее дорогостоящий элемент схемы — дросселя. Более экономный вариант — двухламповый светильник с дросселем. О том, как реализовать схему, рассказывается в видео.
Электронный балласт
Недостатки схемы ЭмПРА вызвали необходимость поиска более оптимального способа подключения. В ходе изысканий был изобретен способ с участием электронного балласта. В данном случае используется не сетевая частота (50 Гц), а высокие частоты (20 – 60 кГц). Удается избавиться от вредного для глаз мигания света.
Внешне электронный балласт — это блок с выведенными наружу клеммами. Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему. Блок малогабаритен, благодаря чему помещается в корпусе даже небольшого прибора освещения. Включение осуществляется гораздо быстрее по сравнению со стандартом ЭмПРА. Работа устройства не доставляет акустического дискомфорта. Данный способ подключения называется бесстартерным.
Разобраться в принципе функционирования устройства такого типа не сложно, поскольку на его обратной стороне есть схема. На ней показано количество ламп для подключения и поясняющие надписи. Имеется информация о мощности лампочек и других технических параметрах устройства.
Подключение осуществляется следующим образом:
Использование умножителей напряжения
Данный вариант позволяет подключать люминесцентную лампу без применения электромагнитного баланса. Используется обычно для увеличения периода эксплуатации лампочек. Схема подключения сгоревших ламп дает возможность работать источникам света еще какое-то время при условии, что их мощность не более 20 – 40 Вт. Нити накала допускаются как пригодные для работы, так и перегоревшие. В любом случае выводы нитей необходимо закоротить.
В результате выпрямления напряжение увеличивается в два раза, поэтому лампочка включается почти мгновенно. Конденсаторы C1 и С2 подбираются исходя из рабочего напряжения 600 Вольт. Недостаток конденсаторов состоит в их больших размерах. В качестве конденсаторов С3 и С4 отдают предпочтение слюдяным устройствам на 1000 Вольт.
Люминесцентные лампы несовместимы с постоянным током. Очень скоро ртути в устройстве накапливается столько, что свет становится ощутимо слабее. Чтобы восстановить яркость свечения, меняют полярность путем переворачивания лампочки. Как вариант, можно установить переключатель, чтобы каждый раз не снимать лампу.
Подключение без стартера
Метод с использованием стартера сопряжен с длительным разогревом лампочки. К тому же эту деталь необходимо часто менять. Обойтись без стартера позволяет схема, где подогрев электродов осуществляется с помощью старых трансформаторных обмоток. Трансформатор выступает в роли балласта.
На лампочках, используемых без стартера, должна быть надпись RS (быстрый старт). Источник света с запуском через стартер не подходит, так как его проводники долго греются, а спирали быстро сгорают.
Последовательное подключение двух лампочек
В данном случае необходимо соединить две люминесцентные лампы с одним балластом. Все устройства подключают последовательным образом.
Для проведения электромонтажных работ понадобятся такие детали:
Подключение выполняется в следующем порядке:
Обратите внимание! В стандартных бытовых переключателях (особенно в недорогих моделях) нередко залипают контакты из-за слишком высоких стартовых токов. В связи с этим для использования в совокупности с люминесцентными лампами рекомендуется приобретать качественные выключатели.
Принцип работы
В начале работы появляются свободно перемещающиеся электроны. Это начинается во время включения рабочего переменного напряжения в зонах около вольфрамовых нитей внутри колбы.
Вольфрамовые нити из-за того, что покрыты пленкой из тяжёлых металлов по мере накаливания выполняют эмиссию электронов. Внешнего напряжения будет не хватать для получения электронного потока. Во время перемещения эти свободные частицы выталкивают электроны с краев атомов инертного газа (аргон). После этого они начинают также перемещаться хаотично.
Далее в итоге совместной деятельности стартера и электромагнитного дросселя получаются условия для повышения силы тока и получение тлеющего разряда аргона. Далее начинается световой поток.
Перемещающиеся атомы обладают необходимой кинетической энергией, которая нужна для перевода электронов паров ртути, которая есть в составе ЛЛ на более высокую орбиту. Получение яркого света получается в слое люминофора, который покрывает внутреннюю часть лампочки.
Принцип работы
Дроссель функционирует в лампе вместе со стартером. Принцип их действия имеет такую последовательность:
- при возникновении напряжения в лампе электрические заряды поступают в стартер, который состоит из заполненного инертным газом баллона с контактами и конденсатора;
- за счет напряжения газ ионизируется и по цепи дросселя проходит ток;
- происходит возрастание силы тока до 0,5 Ампер за счет разогрева контактов из биметалла и газа;
- далее происходит нагревание катодов, и освобождаются электроды, подогревая в трубке светильника ртутные пары;
- ионизация завершается при мгновенном замыкании контактов завершение ионизации происходит при мгновенном замыкании контактов;
- при понижении температуры стартера осуществляется их быстрое размыкание и прекращение подачи тока к катоду и стартеру.
Заряд, сформировавшийся в ртутных парах, обеспечивает ультрафиолетовое излучение, под воздействием которого возникает освещение видимое человеком.
Особенности источника света
Сегодня сложно встретить помещение, в котором бы не использовались люминесцентные лампы. Они покорили потребителей своей ценой и качественным свечением и стали отличной заменой морально устаревших ламп накаливания.
Люминесцентные лампы в офисе
При этом такие источники света способны создавать свечения различных типов. Все технические характеристики данной продукции указаны в маркировке, которая отражает:
- мощность лампы;
- диаметр ее трубки;
- цвет свечения.
Несмотря на столь обширное разнообразие, для люминесцентной лампы любого типа характерен один и тот же принцип работы. Поэтому, зная, каким образом функционирует данный тип лампы, можно проверить работоспособность каждого элемента электросхемы своими руками. Особенно, если сомнения вызывает именно стартер. В отличие от своего предшественника, лампы накаливания, для люминесцентной продукции характерна более сложная конструкция. Внешне данный тип источника имеет вид стеклянной непрозрачной трубки или баллона, заполненного ртутными парами и инертным газом.
Строение люминесцентной лампочки
По краям баллона размещены электроды, имеющие вид подогреваемых спиралей. На них происходит подача напряжения, благодаря которой в парах ртути формируется электрический разряд, порождающее невидимое ультрафиолетовое излучение. Ультрафиолетовое излучение влияет на слой люминофора. Он нанесен на стекло изнутри ровным слоем. Благодаря ему такие лампы и образуют ровное свечение.
Такого рода лампы запускаются с помощью специального пускорегулирующего аппарата (ПРА). Это устройство может быть двух типов:
- электронным;
- электромагнитным.
В электромагнитном ПРА основным элементом является дроссель или балластное сопротивление. Дроссель имеет вид катушки с железным сердечником, которая последовательно подключена к лампе. Данный элемент обеспечивает стабильность разряда, а также ограничивает ток в осветительном приборе. При включении дроссель ограничивает стартовый ток, пока катоды (электроды) разогреваются. После этого он создает повышенное напряжение, необходимое для зажигания лампы. Но кроме дросселя, у любой люминесцентной лампы есть еще один важный элемент – стартер тлеющего разряда. Именно стартер нужно проверить в первую очередь, если люминесцентный источник света перестал работать.
Схемы
При подключении люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).
Схема подключения с применением электромагнитный балласта или ЭмПРА (дросель и стартер)
Принцип работы: при подключении электропитания в стартере появляется разряд и замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается. В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно для повторного замыкания электродов стартера. Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.
- В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
- Долгий пуск не менее 1 до 3 секунд (зависимость от износа лампы)
- Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
- Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем детали станков, вращающихся синхронно с частотой сети- кажутся неподвижными.
- Звук от гудения пластинок дросселя, растущий со временем.
Схема включения с двумя лампами но одним дросселем
. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп. Следует заметить что в последовательной схеме включения двох ламп применяются стартеры на 127 Вольт, они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт
Читать также: Картинки для выпиливания лобзиком для начинающих
Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.
Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства
А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.
Люминесцентную лампочку сегодня можно встретить практически в любом помещении. Она является источником дневного света и дает возможность экономить электроэнергию. Поэтому такие лампы называются еще экономками.
Внешний вид люминесцентной лампы
Но такие изделия имеют один существенный недостаток – они перегорают. И причиной тому является сгорание электронной начинки – дросселя или стартера. Данная статья расскажет вам о том, существует ли способ подключения люминесцентных ламп без использования дросселя в электросхеме.
Питание от 220В без дросселя и стартера
Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают. Всё это стоит не дешево, поэтому есть несколько схем для подключения светильника без этих элементов. Одну из них вы видите на рисунке ниже.
Диоды можно выбирать любые с обратным напряжением не менее 1000В и током не меньше чем потребляет светильник (от 0,5 А). Конденсаторы выбирайте с таким же напряжением в 1000В и ёмкостью 1-2 мкФ
Обратите внимание, что в этой схеме включения выводы лампы замкнуты между собой. Это значит, что спирали в процессе зажигания не участвуют и можно использовать схему для розжига ламп, где они перегорели
Такую схему можно использовать для освещения подсобных помещений и коридоров. В гараже можно применять, если в нём вы не работаете на станках. Светоотдача может быть ниже, чем при классическом подключении, а световой поток будет мерцать, хоть это и не всегда заметно для человеческого глаза. Но такое освещение может вызвать стробоскопический эффект — когда вращающиеся части могут казаться неподвижными. Соответственно это может привести к несчастным случаям.
Примечание: во время экспериментов учтите, что запуск люминесцентных источников света в холодное время года всегда осложнен.
Советуем изучить — Электрооборудование токарных станов с ЧПУ
На видео ниже наглядно показано, как запустить люминесцентную лампу, используя диоды и конденсаторы:
Есть еще одна схема подключения люминесцентной лампы без стартера и дросселя. В качестве балласта при этом используется лампочка накаливания.
Лампу накаливания использовать на 40-60 Вт, как показано на фото:
Альтернативой описанным способам является использование платы от энергосберегающих ламп. Фактически это тот же ЭПРА, что используется с трубчатыми аналогами, но в миниатюрном формате.
На видео ниже наглядно показано, как подключить люминесцентную лампу через плату энергосберегающей лампы:
Схемы со стартером
Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.
Схема подключения люминесцентных ламп со стартером
Вот как она работает:
При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера. Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом. Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель. За счет резкого скачка очень быстро разогреваются электроды. Биметаллическая пластина стартера остывает и разрывает контакт. В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.
Рекомендуем: Почему гаснет газовая колонка, как ее настроить?
Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.
Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА . Часто это устройство называют просто дросселем.
Один из ЭмПРА
Недостатков у этой схемы подключения люминесцентной лампы достаточно:
пульсирующий свет, который негативно сказывается на глазах и они быстро устают; шумы при пуске и работе; невозможность запуска при пониженной температуре; длительный старт — от момента включения проходит порядка 1-3 секунд.
Две трубки и два дроссели
В светильниках на две лампы дневного света два комплекта подключаются последовательно:
фазный провод подается на вход дросселя; с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1; со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);
Так же подключается вторая трубка: сначала дроссель, с него — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.
Схема подключения на две лампы дневного света
Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.
Схема подключения двух ламп от одного дросселя (с двумя стартерами)
Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.
Технические характеристики
Технические особенности дросселей, на которые стоит обязательно обращать внимание при выборе источника света, следующие:
- Назначение. В люминесцентном устройстве катушка индуктивности создает нужный импульс для того, чтобы пары металла могли в устройстве гореть, также она поддерживает нужное значение мощности во время функционирования устройства.
- Мощность. Главным техническим параметром ограничителя является значение его мощности. Именно от него зависит работоспособность всех других параметров и лампы в целом. Исходя из показателей мощности, эти параметры у каждого ограничителя светильника будут разные. По уровню мощности ограничители разделяются на три больших категории: B, C, и D. От того, к какой категории они относятся, зависит наименование ограничителей.
- Коэффициент самоиндукции. За счет индуктивности дросселя мощность электроэнергии, которая приходиться на проводящие контакты лампы.
Устройство стартера люминесцентных ламп
Конструкция этого элемента достаточно проста. Каждая модель, выпущенная определенным производителем, имеет свои технические характеристики. Это следует учитывать при выборе ламп. Стартер – это стеклянный баллон, внутри которого находится инертный газ. Это может быть смесь гелия с водородом или неон. В баллон впаяны неподвижные металлические электроды. Их выводы проходят через цоколи.
Баллон расположен внутри пластмассового или металлического корпуса, имеющего сверху отверстие. Самым популярным материалом для изготовления корпуса является пластик. Справляться с высокой температурой такому корпусу позволяет специальная пропитка. Любой имеет только две ножки (контакта).
Если вынуть конструкцию из корпуса видно саму колбу. Также видно, что параллельно электродам колбы подключен какой-то элемент – это конденсатор. Его емкостью составляет порядка 0,003-0,1 мкф. Конденсатор призван выполнять сразу две функции:
- — борется с радиопомехами, которые возникают из-за контакта электродов, посредством снижения их уровня.
- — участвует в процессе зажигания лампы.
Конденсатор снижает импульс напряжения, который формируется при размыкании электродов, и повышает его продолжительность.
За счет параллельного включения с электродами конденсатор снижает вероятность их сваривания (залипания). Подобное явление может произойти в процессе размыкания электродов вследствие формирования электрической дуги. Конденсатор в кратчайшие сроки гасит дугу.
Устройство и особенности работы лампы
Возникает вопрос, зачем для включения подобных лампочек нужно собирать какую-то схему. Чтобы на него ответить, стоит разобрать их принцип действия. Итак, люминесцентные (иначе – газоразрядные) лампы состоят из следующих элементов:
- Стеклянная колба, чьи стенки покрыты изнутри веществом на основе фосфора. Этот слой выделяет равномерное белое свечение при попадании на него ультрафиолетового излучения и носит название люминофора.
- По бокам колбы установлены герметичные торцевые цоколи с двумя электродами каждая. Внутри контакты соединены вольфрамовой нитью накала, покрытой специальной защитной пастой.
- Источник дневного света наполнен инертным газом вперемешку с парами ртути.
Свечение люминофора вызывает поток электронов, проходящий сквозь пары ртути в среде аргона. Но вначале между двумя нитями накала должен возникнуть устойчивый тлеющий разряд. Для этого требуется кратковременный импульс высокого напряжения (до 600 В). Чтобы его создать при включении светильника, как раз и нужны вышеупомянутые детали, подключенные по определенной схеме. Техническое название устройства — балласт или пускорегулирующая аппаратура (ПРА).
В экономках ПРА уже встроена в цоколь
Еще один вариант соединения
Существует еще и немного другая подходящая схема:
Другой вариант соединения
Здесь также используется стандартный источник света с мощностью, примерно равной лампе дневного света. При этом само устройство должно подключаться в сети питания через выпрямитель. Его собирают по классической схеме, применяемый для удвоения напряжения: VD1, VD2, С1 и С2. Данный вариант соединения происходит следующим образом:
- в момент включения внутри стеклянной колбы отсутствует разряд;
- далее на нее падает удвоенное напряжение сети. Благодаря этому происходит зажигание света;
- активация устройства происходит без предварительного подогрева катодов;
- после запуска в работу электроцепи включается токоограничивающая лампа (HL1);
- в тоже время HL2 происходит установление рабочего напряжения и тока. В результате лампа накаливания будет светиться еле-еле.
Чем люминесцентные лампы лучше ламп накаливания?
Люминесцентные лампы имеют ряд преимуществ по сравнению с лампами накаливания:
-
Энергосбережение: люминесцентные лампы используют в 3-5 раз меньше электроэнергии, чем лампы накаливания, что позволяет значительно снизить электроэнергетические расходы.
-
Долговечность: люминесцентные лампы работают значительно дольше, чем лампы накаливания, что позволяет сэкономить на замене ламп.
-
Качество света: свет от люминесцентных ламп более равномерный, без мерцания и более похож на естественный дневной свет, чем свет от ламп накаливания.
-
Экологическая безопасность: люминесцентные лампы содержат меньше ртути, чем ранее, и их можно перерабатывать и утилизировать в соответствии с экологическими нормами.
-
Разнообразие: люминесцентные лампы доступны в разных размерах, формах, цветовых температурах и мощностях, что позволяет выбрать подходящую лампу для конкретной ситуации и помещения.
Однако, люминесцентные лампы имеют и некоторые недостатки, такие как высокая стоимость при покупке и медленное включение, особенно в холодных помещениях. Также устаревшие модели люминесцентных ламп могут содержать больше ртути, что усложняет их утилизацию и представляет угрозу для окружающей среды.