Как вычислить площадь поперечного сечения круга: подробное объяснение

Хотите узнать, как вычислить площадь поперечного сечения круга? В статье «Как найти площадь сечения круга» вы найдете простые и понятные пошаговые инструкции. Необходимые формулы и примеры расчета помогут вам легко и быстро решить эту задачу.

При решении заданий сопротивления материалов в расчетные формулы вводят величины, которые определяют формулу и размеры поперечных сечений, они называются геометрическими характеристиками плоских сечений. Первой такой величиной стоит считать площадь сечения. Рассчитать площадь поперечного сечения можно даже ствола дерева, ведь оно по форме похоже на эллипс или круг. Согласно формуле, площадь поперечного сечения круга, возможно, рассчитать достаточно точно по формуле. Площадь сечения круга или шара можно найти по формуле:

S = πR 2

При этом не стоит забывать о том, что расстояние от плоскости до центра фигуры совпадет с плоскостью, тогда плоскость поперечного сечения шара будет равняться нулю, так как касание им плоскости происходит лишь в одной точке.

Рассмотрим на примере параллелограмма. Прежде всего, для того чтобы найти площадь поперечного сечения, необходимо знать значения высоты и снования параллелограмма. Даже если нам известна только ширина основания и его длина через эти значения возможно найти диагональ, используя теорему Пифагора: квадрат гипотенузы прямоугольного треугольника равняется сумме квадратов катетов. Формула выглядит как:

a 2 + b 2 = c 2

Из нее можно вывести такую формулу:

c = S*q*r*t*(a 2 + b 2 )

Когда у нас известно значение диагонали параллелограмма, то его можно подставить в формулу:

S – площадь поперечного сечения, h это значений высоты параллелограмма. Результат, который получится после исчислений, будет означать площадь поперечного сечения. Такая формула:

используется в тех случаях, когда сечение идет параллельно двум основаниям.

При вычислении площади поперечного сечения цилиндра, которое проходит вдоль его оснований, если одна из сторон данного прямоугольника тождественна радиусу основания, а другая из сторон – высоте цилиндра используется такая формула:

где h – высота цилиндра R – величина радиуса окружности. Если же сечение не проходит сквозь ось цилиндра и одновременно параллельно его основаниям, то это означает, что сторона данного треугольника не равняется диаметру окружности основания.

Для решения этой проблемы необходимо узнать значение неизвестной стороны предварительно нарисовав окружность у основания цилиндра. Расчет производится также по формуле выведенной из теоремы Пифагора. Затем подставляется формула:

где 2а – значение хорды, расчета площади поперечного сечения.

Источник: www.studyguide.ru

Область применения

Круг — одна из фундаментальных фигур, которые окружают человека повсюду. Трубы, колеса, лампы, конфорки у плиты — всё это имеет форму круга или поперечное сечение в виде круга. Расчёт площади такого сечения может понадобиться в следующих ситуациях:

  1. Определение объемов емкостей.
  2. Решение задач по сопротивлению материалов и электротехнике.
  3. Расчет количества материалов при проектировании, строительстве и ремонте.
  4. Ведение поливного земледелия.

Стоит обратить внимание на разницу между кругом и окружностью. Окружность — это замкнутая кривая, все точки которой равно удалены от центра, в то время как круг — это часть плоскости (геометрическая фигура), ограниченная окружностью.

Круг имеет ряд характеристик:

  • радиус (r/R) — отрезок, соединяющий центр фигуры с его границей;
  • диаметр (d/D) — отрезок, который соединяет две точки границы круга и проходит через его центр;
  • длина окружности (C/c/L/l).

Теорема гласит: площадь круга (S) равна произведению половины длины окружности и его радиуса. Длина окружности С находится в прямой зависимости от радиуса R с коэффициентом π («пи» = 3,14).

Калькулятор площади круга

Варианты расчёта площади круга через радиус или диаметр
Выбираем вариант расчёта площади

Визуально выглядит так:

Вводим диаметр или радиус:

Площадь круга равна :

Калькулятор длины окружности

Площадь круга с радиусом r равна πr2. Здесь символ π (греческая буква пи) обозначает константу, выражающую отношение длины окружности к её диаметру или площади круга к квадрату его радиуса. Поскольку площадь правильного многоугольника равна половине его периметра, умноженного на апофему (высоту), а правильные многоугольники стремятся к окружности при росте числа сторон, площадь круга равна половине длины окружности, умноженной на радиус (то есть 1⁄2 × 2πr × r).

Википедия

Способы расчета

Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.

Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.

При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.

Цилиндр, конус и шар — базовые объемные фигуры. Однако существуют более сложные фигуры, например, тор. Тор, или тороид, при первом приближении являет собой не что иное, как бублик или баранку. Разломив его пополам, на торцах можно увидеть два одинаковых круга. Площадь такого поперечного сечения можно получить, удвоив имеющуюся (на рисунке серая область справа). Если взять нож и рассечь баранку вдоль, на срезе получится кольцо. В случае с такой фигурой необходимо найти площадь круга по внешней окружности и вычесть из нее «дырку от бублика» (показано серым на рисунке слева).

Как рассчитать площадь круга по диаметру или радиусу, формулы

Найти площадь круга по диаметру или радиусу можно в нашем онлайн калькуляторе. Расчёты можно производить в любых единицах, в метрах(м), дециметрах(дцм), сантиметрах(см), миллиметрах(мм). Просто вводим цифры и получаем результат.

Условные обозначения в формулах

  • S- площадь окружности
  • Р- число п = 3,14159
  • R- радиус окружности
  • D- диаметр окружности D=2R

Формула расчёта через радиус

S=Р*R2

Формула расчёта через диаметр

S=1/4Р*D2

Теория. Площадь круга

Формулы для вычисления площади круга:

S = π r 2
S = 1 π d 2
4

●S =

где S — площадь круга, r — радиус круга, d — диаметр круга, l — длина окружности, π = 3.141592

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Как найти площадь круга

Площадь круга можно найти двумя способами:

  • используя радиус круга,
  • используя диаметр круга.

Остановимся чуть подробнее на каждом способе и рассмотрим несколько примеров.

Формула площади круга через радиус круга

Сначала разберем общий случай.

Пусть нам дана окружность O O O произвольного радиуса R . R. R. Площадь круга через радиус вычисляется при помощи формулы

S = π R 2 S=\pi R^2 S=πR2,

где π \pi π – число «Пи», выражающее отношение длины окружности к ее диаметру и численно равное около 3 , 14 3,14 3,14,

R R R – радиус нашей окружности.

Теперь, чтобы было более понятно, рассмотрим пару практических примеров.

Пример

Найдите площадь круга, радиус которого равен 6 см. Ответ дайте, округленный до целого числа.

Решение:

Пользуемся нашей формулой для вычисления площади круга и получаем:

S = π R 2 = 3 , 14 ⋅ 6 ⋅ 6 = 3 , 14 ⋅ 36 = 113. S=\pi R^2=3,14\cdot 6 \cdot 6=3,14 \cdot 36=113. S=πR2=3,14⋅6⋅6=3,14⋅36=113.

Ответ: 113 см2.

Формула площади круга через диаметр

Рассмотрим сначала обобщенный случай без использования цифр.

Формула вычисления площади круга с помощью диаметра немного отличается от формулы, в которой мы использовали радиус. Но ответ остается, безусловно, таким же.

Итак, наша формула выглядит следующим образом:

S = π D 2 4 S=\pi \frac{D^2}{4} S=π4D2​

Давайте разберемся, откуда она вообще взялась.

Для начала выразим радиус через диаметр. Получаем R = D 2 R=\frac{D}{2} R=2D​, затем подставляем полученное выражение в нашу исходную формулу S = π R 2 S=\pi R^2 S=πR2 и получаем результат: S = π D 2 2 2 S=\pi \frac{D^2}{2^2} S=π22D2​, далее упрощаем и выходим на окончательный ответ S = π D 2 4 S=\pi \frac{D^2}{4} S=π4D2​.

Пример Найти площадь круга, если известно, что четвертая часть диаметра равна 2,5 см.

Решение:

Находим диаметр:

D 4 = 2 , 5. \frac{D}{4} =2,5. 4D​=2,5.

Отсюда,

D = 2 , 5 ⋅ 4 = 10. D=2,5 \cdot 4=10. D=2,5⋅4=10.

Подставляем значения в формулу:

S = π D 2 4 = 3 , 14 ⋅ 1 0 2 4 = 3 , 14 ⋅ 100 4 = 3 , 14 ⋅ 25 = 78 , 5 S=\pi \frac{D^2}{4} =3,14 \cdot \frac{10^2}{4} =3,14 \cdot \frac{100}{4} =3,14 \cdot 25=78,5 S=π4D2​=3,14⋅4102​=3,14⋅4100​=3,14⋅25=78,5

Ответ: 78,5 см2.

Пример решения задачи посложнее.

Пример

Имеется два круга. Площадь первого 153 , 86 153,86 153,86 см2. Найдите площадь второго круга, радиус которого в 2 2 2 раза больше радиуса первого круга.

Решение: Для решения задачи нам в первую очередь нужно найти радиус первого круга. Из формулы S = π R 2 S=\pi R^2 S=πR2 находим, что R = S π R=\sqrt{\frac{S}{\pi}} R=πS​ ​.

R = 153.86 3.14 = 49 = 7. R=\sqrt{\frac{153.86}{3.14}}=\sqrt{49} = 7. R=3.14153.86​ ​=49 ​=7.

Радиус второго круга равен 7 ⋅ 2 = 14. 7 \cdot 2=14. 7⋅2=14.

Наконец, найдем площадь этого круга: S = π R 2 = 3.14 ⋅ 1 4 2 = 3 , 14 ⋅ 196 = 615 , 44. S=\pi R^2=3.14\cdot14^2=3,14 \cdot 196=615,44. S=πR2=3.14⋅142=3,14⋅196=615,44.

Ответ: 615 , 44 615,44 615,44 см2.

Ищете специалиста, который сможет написать контрольную работу на заказ для вас? Наши эксперты подбирают индивидуальный подход к каждому клиенту!

Длина окружности и площадь круга

Длина любой окружности больше своего диаметра в одно и то же число раз, а именно, приблизительно в 3,14 раза. Для обозначения этой величины используется маленькая (строчная) греческая буква π (пи):
Таким образом, длину окружности (C) можно вычислить, умножив константу π на диаметр (D), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:

C = πD = 2πR

где C – длина окружности, π – константа, D – диаметр окружности, R – радиус окружности.

Так как окружность является границей круга, то длину окружности можно также назвать длиной круга или периметром круга.

Задачи на длину окружности

Задача 1.

Найти длину окружности, если её диаметр равен 5 см.

Так как длина окружности равна π умноженное на диаметр, то длина окружности с диаметром 5 см будет равна:

C ≈ 3,14 · 5 = 15,7 (см)

Задача 2.

Найти длину окружности, радиус которой равен 3,5 м.

Сначала найдём диаметр окружности, умножив длину радиуса на 2:

D = 3,5 · 2 = 7 (м)

теперь найдём длину окружности, умножив π на диаметр:

C ≈ 3,14 · 7 = 21,98 (м)

Задача 3.

Найти радиус окружности, длина которой равна 7,85 м.

Чтобы найти радиус окружности по её длине, надо длину окружности разделить на 2π

следовательно радиус будет равен:

R 7,85 = 7,85 = 1,25 (м)
2 · 3,14 6,28

Площадь круга равна произведению числа π на квадрат радиуса. Формула нахождения площади круга:

S = πr2

где S – площадь круга, а r – радиус круга.

Так как диаметр круга равен удвоенному радиусу, то радиус равен диаметру, разделённому на 2:

следовательно, формула нахождения площади круга через диаметр будет выглядеть так:

S = π( D )2 = π D2 = π D2
2 22 4

Задачи на площадь круга

Задача 1.

Найти площадь круга, если его радиус равен 2 см.

Так как площадь круга равна π умноженное на радиус в квадрате, то площадь круга с радиусом 2 см будет равна:

S ≈ 3,14 · 22 = 3,14 · 4 = 12,56 (см2)

Задача 2.

Найти площадь круга, если его диаметр равен 7 см.

Сначала найдём радиус круга, разделив его диаметр на 2:

7 : 2 = 3,5 (см)

теперь вычислим площадь круга по формуле:

S = πr2 ≈ 3,14 · 3,52 = 3,14 · 12,25 = 38,465 (см2)

Данную задачу можно решить и другим способом. Вместо того чтобы сначала находить радиус, можно воспользоваться формулой нахождения площади круга через диаметр:

S = π D2 ≈ 3,14 72 = 3,14 49 = 153,86 = 38,465 (см2)
4 4 4 4

Задача 3.

Найти радиус круга, если его площадь равна 12,56 м2.

Чтобы найти радиус круга по его площади, надо площадь круга разделить π, а затем из полученного результата извлечь квадратный корень:

r = √S : π

следовательно радиус будет равен:

r ≈ √12,56 : 3,14 = √4 = 2 (м)

Число π

Длину окружности предметов, окружающих нас, можно измерить с помощью сантиметровой ленты или верёвки (нитки), длину которой потом можно померить отдельно.

Но в некоторых случаях померить длину окружности трудно или практически невозможно, например, внутреннюю окружность бутылки или просто длину окружности начерченной на бумаге.

В таких случаях можно вычислить длину окружности, если известна длина её диаметра или радиуса.

Чтобы понять, как это можно сделать, возьмём несколько круглых предметов, у которых можно измерить и длину окружности и диаметр. Вычислим отношение длины к диаметру, в итоге получим следующий ряд чисел:

Ведро Таз Бочка Тарелка Стакан
Окружность 91 см 157 см 220 см 78,5 см 23,9 см
Диаметр 29 см 50 см 70 см 25 см 7,6 см
Отношение (с точн. до 0,01) 3,14 3,14 3,14 3,14 3,14

Из этого можно сделать вывод, что отношение длины окружности к её диаметру это постоянная величина для каждой отдельной окружности и для всех окружностей в целом. Это отношение и обозначается буквой π.

Используя эти знания, можно по радиусу или диаметру окружности находить её длину. Например, для вычисления длины окружности с радиусом 3 см нужно умножить радиус на 2 (так мы получим диаметр), а полученный диаметр умножить на π. В итоге, с помощью числа π мы узнали, что длина окружности с радиусом 3 см равна 18,84 см.

Источник: https://naobumium.info/planimetriya/dlina_okruzhnosti.php

Площадь круга

Круг – это плоская фигура, которая представляет собой множество точек равноудаленных от центра. Все они находятся на одинаковом расстоянии и образуют собой окружность.

Отрезок, который соединяет центр круга с точками его окружности, называется радиусом. В каждой окружности все радиусы равны между собой. Прямая, соединяющая две точки на окружности и проходящая через центр называется диаметром.

Формула площади круга рассчитывается с помощью математической константы – числа π..

: Число π. представляет собой соотношение длины окружности к длине ее диаметра и является постоянной величиной. Значение π = 3,1415926 получило применение после работ Л. Эйлера в 1737 г.

Площадь окружности можно вычислить через константу π. и радиус окружности. Формула площади круга через радиус выглядит так:

Рассмотрим пример расчета площади круга через радиус. Пусть дана окружность с радиусом R = 4 см. Найдем площадь фигуры.

Площадь нашей окружности будет равна 50,24 кв. см.

Существует формула площади круга через диаметр. Она также широко применяется для вычисления необходимых параметров.

Данные формулы можно использовать для нахождения площади треугольника по площади описанной окружности.

Рассмотрим пример расчета площади круга через диаметр, зная его радиус. Пусть дана окружность с радиусом R = 4 см. Для начала найдем диаметр, который, как известно, в два раза больше радиуса.

Теперь используем данные для примера расчета площади круга по приведенной выше формуле: Как видим, в результате получаем тот же ответ, что и при первых расчетах.

Знания стандартных формул расчета площади круга помогут в дальнейшем легко определять площадь секторов и легко находить недостающие величины.

Мы уже знаем, что формула площади круга рассчитывается через произведение постоянной величины π на квадрат радиуса окружности. Радиус можно выразить через длину окружности и подставить выражение в формулу площади круга через длину окружности: Теперь подставим это равенство в формулу расчета площади круга и получим формулу нахождения площади круга, через длину окружности

Рассмотрим пример расчета площади круга через длину окружности. Пусть дана окружность с длиной l = 8 см. Подставим значение в выведенную формулу:

Итого площадь круга будет равна 5 кв. см.

Площадь круга описанного вокруг квадрата

Очень легко можно найти площадь круга описанного вокруг квадрата.

Для этого потребуется только сторона квадрата и знание простых формул. Диагональ квадрата будет равна диагонали описанной окружности. Зная сторону a ее можно найти по теореме Пифагора: отсюда . После того, как найдем диагональ – мы сможем рассчитать радиус: . И после подставим все в основную формулу площади круга описанного вокруг квадрата:

Рассмотрим пример расчета площади круга, описанного вокруг квадрата. Задача: дан квадрат, вписанный в круг. Его сторона a = 4 см. Найдите площадь окружности. Для начала рассчитаем длину диагонали d.

Теперь подставляем данные в формулу

Зная несколько простых правил и теорему Пифагора, мы смогли рассчитать площадь описанной вокруг квадрата окружности.

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом.

Формула площади сектора кольца, выраженная через внешний и внутренний радиусы

Пусть дана окружность радиуса R и окружности радиуса r. Причем R>r. Совместим центры этих окружностей. Возьмем на окружности с большим радиусом две произвольные точки. Проведем к ним радиусы, которые образуют угол α. Эти радиусы отсекут от окружностей некоторые дуги.

Фигура, заключенная между этими дугами окружностей и радиусами, проведенными к концам этих дуг, и будет сектор кольца, у которого R является внешним радиусом, r -внутренним радиусом.Тогда площадь этой фигуры будет равна разницы между площадью сектора круга с большим радиусом и площадью сектора круга с меньшим радиусом.

Площадь сектора круга с радиусом r выражается формулой:

где l–длина дуги равная Подставим выражение длины дуги в формулу площади сектора. Получим: Площадь круга с радиусом R выражается формулой: где L–длина дуги равная Подставим выражение длины дуги в формулу площади сектора.

Получим:

Тогда площадь кольца будет равна: Таким образом, площадь сектора кольца равна произведению площади единичного сектора кольца, то есть сектору, соответствующему центральному углу с мерой равной единице на меру центрального угла, соответствующего данному сектору.Формула имеет вид:

Пример расчета площади сектора кольца, если известны его радиусы.Найдите площадь сектора кольца, образованного углом 30° , если его внешний радиус равен 14, а внутренний – 8.Площадь кольца вычисляется по формуле:

Подставив значения из условия задачи, имеем:

Page 3

Чтобы найти объем конуса необходимо произвести дополнительные построения.

Построим вписанную в конус правильную n-угольную пирамиду и опишем вокруг данного конуса правильную n-угольную пирамиду.Вписанная пирамида содержится в конусе. Из этого следует, что ее объем не больше объема конуса.

Описанная пирамида содержит конус, а это значит, что ее объем не меньше объема конуса.

Впишем в основание вписанной пирамиды окружность. Если радиус вписанного правильного n-угольника равен R, то радиус вписанной в него окружности будет равен:

Объем вписанной пирамиды вычисляется по формуле:

где S – основание пирамиды. Площадь данного круга вычисляется по формуле: Площадь основания вписанной пирамиды не меньше площади круга, содержащегося в ней

Поэтому утверждение, что объем вписанной в конус пирамиды не меньше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий эту пирамиду будет больше или равен V≥

Теперь опишем окружность вокруг основания описанной вокруг конуса пирамиды. Радиус этой окружности будет равен:

Площадь данного круга вычисляется по формуле: Основание описанной пирамиды содержится в круге описанном вокруг него. Поэтому площадь основания пирамиды не больше Поэтому утверждение,что объем описанной пирамиды не больше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий в эту пирамиду будет меньше или равен

Два полученных неравенства равны при любом n.

Если то Тогда из первого неравенства следует, что V≥ Из второго неравенства

Отсюда следует, что

Объем конуса равен одной трети произведения радиуса на высоту.

Пример расчета объема конусаНайти объем конуса, если его радиус основания равен 3 см, а образующая 5 см.

Объем конуса вычисляется по формуле:

Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и радиус основания образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора имеем:

Отсюда:

Подставим значение радиуса и высоты в формулу объема конуса.Имеем:

Page 4

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса.

Дополним данный усеченный конус до полного . Пусть его высота будет x . Если высота усеченного конуса – h , то высота отсеченного конуса будет – x-h .

Высота усеченного конуса будет равна разности объема полного конуса с радиусом R1и высотой x и объема полного конуса с радиусом R2. и высотой x-h.

Из подобия этих конусов получаем: Выразим x:

Тогда объем усеченного конуса можно выразить: Применив формулу разницы кубов, имеем:

Таким образом, формула объема усеченной пирамиды имеет вид:

Пример расчета объема усеченного конусаРадиусы основания усеченного конуса равны 11 и 27 , образующая относится к высоте как 17:15 . Найдите объем усеченного конуса.

Объем усеченного конуса вычисляется по формуле: Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и разница радиусов оснований образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора получаем: Так как образующая относится к высоте как 17:15, то L=17x, H=15x.

Тогда:

Тогда высота усеченного конуса будет равна:

Подставим значения в формулу объема усеченного конуса. Получим:

Page 5

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Page 6

У большинства детей младшего школьного возраста хорошо развита механическая память, которая задействуется при выучивании правил.

Но для отдельных детей, а особенно творческих личностей, зубрежка является невыносимой.

Родители, думающие, что их чадо не способно освоить изучение таблицы умножения и поэтому в дальнейшем будет отставать в математике, заблуждаются. На самом деле к нему нужен совершенно другой, особый подход.

Читать далее

Ниже представлена таблица степеней от 2 до 10 натуральных чисел от 1 до 20. Читать далее

Таблица кубов натуральных чисел от 1 до 100 Читать далее

Таблица факториалов от 1 до 40 Читать далее

Page 7

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Источник: https://2mb.ru/matematika/geometriya/ploshhad-kruga/

Как рассчитать количество сайдинг и комплектующие?


Чтобы рассчитать количество сайдинга и комплектующих для отделки дома, нужно выполнить следующие шаги:

  1. Измерьте площадь стен, которые вы хотите отделать. Для этого умножьте длину стены на ее высоту. Если у вас несколько стен, вычислите площадь каждой из них и сложите все результаты.

  2. Рассчитайте общую площадь дверей и окон на стенах, которые вы хотите отделать, и вычтите эту площадь из общей площади стен, полученной на первом шаге.

  3. Выберите нужный тип сайдинга и выясните, какой объем он покрывает. Обычно у производителей есть таблицы, в которых указано, сколько погонных метров покрывает одна упаковка сайдинга.

  4. Рассчитайте количество погонных метров сайдинга, которое вам нужно для покрытия стен. Для этого разделите общую площадь стен, которую вы вычислили на первом шаге, на объем, покрываемый одной упаковкой сайдинга.

  5. Определите количество комплектующих, таких как уголки, профили, соединители и т.д., которые вам потребуются для установки сайдинга. Обычно производители указывают количество комплектующих, необходимых для установки сайдинга на один квадратный метр.

  6. Умножьте количество погонных метров сайдинга, которое вы рассчитали на четвертом шаге, на количество комплектующих на один квадратный метр, которое вы вычислили на пятом шаге, чтобы получить общее количество комплектующих.

Таким образом, рассчитав площадь стен, выбрав тип сайдинга и узнав у производителя, какой объем он покрывает, а также определив количество комплектующих на квадратный метр, вы сможете рассчитать, сколько сайдинга и комплектующих вам нужно для отделки дома.